A promising alternative for time consuming measurements of pathogens in water is the detection of fecal pigments (FP) as indicator compounds by 2D fluorescence. Pigment analysis is of high efficiency and used for early warning against cyanotoxins in water since a long time.
However, while algae pigments can be measured directly, the fecal pigments are of lower fluorescence effect and therefore the sensitivity as well as selectivity of the measurement has to be improved. The project follows the strategy of selective pre-concentration of the analytes, a method which is online practicable and widely used for trace detection of organic contaminants, e.g. using LC-MSMS. Because of the broad peaks of fluorescence, a new calibration software based on multivariate approach is urgent.
The general project outcome is the online-detection of pathogen-like pollution in water. In detail, theoutcome of the project is described a follow:
Potential users of the new technique could be: drinking and wastewater treating companies as well as companies of food production.
ReadGlobally, nearly 6,000 children die each day due to water-related illnesses. Treatment based approaches must be implemented to minimize these deaths. Rapid (< 1 hr) detection platforms covering most waterborne pathogens of concern, their indicators, and associated sources of antibiotic resistance bacteria on a single chip are urgently needed.
Such platforms must be operable under field conditions with personnel requiring minimal training. This proposal focuses on such a multiplexed chip by adapting an already developed robust and low cost platform (Gene-Z) for on-site water pathogen detection. Genetic markers associated with at least a dozen waterborne pathogens, indicators, and antibiotic resistance bacteria are included on the chip including viability testing to be validated with appropriate sensitivity and specificity.
The proposed project has three objectives: 1) Provision of waterborne pathogens chips and detection systems, 2) Integration of Live vs. Dead (Viability) Protocol on the Chip, and 3) Field Validation, Deployment, Support and Feedback. When fully developed and validated, the chip and platform will provide the a number of key benefits compared to other existing technologies and approaches including fast results, ease of use, specificity, sensitivity, and low cost.
Differentiating characteristic compared to other molecular biology technologies include multiplexing of bacteria and protozoan, use of multiple virulence markers, live vs. dead differentiation, and measurement of antibiotic resistance genes. The consortium combines academic and industry partners with expertise in molecular biology, bioanalytics, and on-site detection technology development.
ReadDissolved water contaminants of inorganic (arsenic, chromate, fluoride, uranium, nitrate or strontium) and organic (pesticides, plasticizers, pharmaceuticals, alkylphenols, endocrine disrupters) origin play an important role in drinking water quality and health. Water guideline values are usually in the ppb (µg/L) region, which makes detection difficult.
Monitoring of such contaminants is time consuming and expensive which poses a significant challenge especially for water supplies in rural areas and/or in developing countries, which present a vast, hugely unexplored and scientifically challenging market. The development of suitable sensor technologies using advanced materials that can be integrated to hand-operated pumps or decentralized water supplies is the subject of this proposal.
The materials will interact with pollutants by covalent, supramolecular or ionic interactions and the detection will subsequently take place by excitation and read-out of the colorimetric signal via commonly available devices such as i-phones. Atomically precise clusters with specific interactions with inorganic and organic contaminants developed by IIT Madras for the detection of heavy metal ions in water at ultra trace levels will be incorporated in electrospun fibres and porous substrates
This technology will be developed further into a sensor device for arsenic in drinking water. Simultaneously the same technology will be expanded further to address specific challenges of chromate, fluoride, a select number of pesticides and alkylphenols (for example) for proof of concept.
The key output from this project will be a working prototype of a visual arsenic sensor systembased on atomically precise clusters incorporated in electrospun membranes (nanofibers spunonto porous membranes or clusters immobilized in porous membranes) which will be;